Hello,(adsbygoogle = window.adsbygoogle || []).push({});

If tau<<T which of the following relations are true:

[tex]\int_{\tau/(1+a)}^{(T+\tau)/(1+a)}v(t)e^{-j2\pi f_0 at}e^{-j2\pi\frac{k}{T}t[1+a]}\,dt=\int_{0}^{T/(1+a)}v(t)e^{-j2\pi f_0 at}e^{-j2\pi\frac{k}{T}t[1+a]}\,dt[/tex]

or

[tex]\int_{\tau/(1+a)}^{(T+\tau)/(1+a)}v(t)e^{-j2\pi f_0 at}e^{-j2\pi\frac{k}{T}t[1+a]}\,dt\simeq\int_{0}^{T/(1+a)}v(t)e^{-j2\pi f_0 at}e^{-j2\pi\frac{k}{T}t[1+a]}\,dt[/tex]

Thanks

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integral Approximation

Loading...

Similar Threads - Integral Approximation | Date |
---|---|

A Lebesgue measure and integral | Jan 14, 2018 |

I Integration above or below axis | Dec 17, 2017 |

Please help me to approximate a integration | Feb 4, 2012 |

Are integrals approximations? | Apr 5, 2007 |

**Physics Forums - The Fusion of Science and Community**