Integral + Complex Conjugate

  • Thread starter Scootertaj
  • Start date
  • #1
Scootertaj
97
0

Homework Statement


Show that the following = 0:
[itex]\int_{-\infty}^{+\infty} \! i*(\overline{d/dx(sin(x)du/dx})*u \, \mathrm{d} x + \int_{-\infty}^{+\infty} \! \overline{u}*(d/dx(sin(x)du/dx) \, \mathrm{d} x[/itex] where [itex]\overline{u}[/itex] = complex conjugate of u and * is the dot product.

2. Work so far
My thoughts: [itex]\int_{-\infty}^{+\infty} \! i*(\overline{d/dx(sin(x)du/dx})*u \, \mathrm{d} x + \int_{-\infty}^{+\infty} \! \overline{u}*(d/dx(sin(x)du/dx) \, \mathrm{d} x[/itex]
=
[itex]\int_{-\infty}^{+\infty} \! -i*(d/dx(sin(x)du/dx)*u \, \mathrm{d} x + \int_{-\infty}^{+\infty} \! \overline{u}*(d/dx(sin(x)du/dx) \, \mathrm{d} x[/itex]

But I don't even know if that's right.
 

Answers and Replies

  • #2
Scootertaj
97
0
Bump.
 

Suggested for: Integral + Complex Conjugate

Replies
5
Views
542
  • Last Post
Replies
3
Views
325
  • Last Post
Replies
23
Views
1K
Replies
4
Views
379
  • Last Post
Replies
5
Views
145
Replies
15
Views
79
Replies
5
Views
485
Replies
13
Views
675
  • Last Post
Replies
5
Views
291
  • Last Post
Replies
1
Views
43
Top