1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Integral Involving Irrational values

  1. Jan 26, 2005 #1
    Hello all

    If we want to calculate the definite integral [tex] \int^b_a x^{\alpha} [/tex] for any irrational value of [tex] \alpha [/tex] where [tex] 0<a<b [/tex] do we use the Mean Value Theorem? Would [tex] \alpha [/tex] be represented as a limit of a sequence of rational numbers [tex] \alpha = \lim_{x\rightarrow \infty} \alpha_n [/tex] and [tex] \alpha [/tex] is not equal to -1. Hence [tex] x^{\alpha} = \lim_{x\rightarrow \infty} x^{\alpha_n} [/tex] So we can always find a number such that [tex] |x^{\alpha} - x^{\alpha_n}| < \epsilon [/tex] (how do we prove this)?.

    Now [tex] f(x) = x^\alpha [/tex] and [tex] g(x) = x^{\alpha_n} [/tex]. Now applying the Mean Value Theorem for Integral Calculus we get:

    [tex] -\epsilon(b-a) + \int^b_a x^{\alpha_n} \ dx < \int^b_a x^{\alpha} \ dx < \int^b_a x^{\alpha_n} + \epsilon(b-a) [/tex]

    We know that [tex] \int^b_a x^{\alpha} \ dx = \frac {1}{\alpha +1}(b^{\alpha +1} - a^{\alpha+1}) [/tex].

    [tex] -\epsilon(b-a) + \frac{1}{\alpha_n +1}(b^{\alpha_n+1} - a^{\alpha_n+1}) < \int^b_a x^\alpha \ dx < \frac{1}{\alpha_n +1}(b^{\alpha_n+1} - a^{\alpha_n+1}) + \epsilon(b-a) [/tex]. From here how do we receive

    [tex] \int^b_a \ dx = \frac{1}{\alpha +1}(b^{\alpha+1} - a^{\alpha +1})[/tex]?

    Last edited: Jan 26, 2005
  2. jcsd
  3. Jan 26, 2005 #2
    [tex] x^\alpha = e^{\alpha lnx}[/tex]
  4. Jan 26, 2005 #3


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    We could use the FTAC, because we know the derivative of x&alpha;+1.
    Last edited: Jan 26, 2005
  5. Jan 26, 2005 #4


    User Avatar
    Science Advisor

    If y= xα then ln(y)= α ln(x) so [itex]\frac{1}{y}\frac{dy}{dx}= \alpha \frac{1}{x}[/itex]. That is, [itex]\frac{dy}{dx}= \alpha\frac{1}{x}y= \alpha\frac{1}{x}x^{\alpha}= \alpha x^{\alpha-1}[/itex]

    From that, it follows that [itex]\frac{1}{\alpha+1}x^{\alpha+1}[/itex] is an anti-derivative of [itex]x^{\alpha;}[/itex].

    [itex] \int^b_a x^{\alpha}= \frac{1}{\alpha+1}x^{\alpha+1}+ C[/itex].
    Last edited by a moderator: Jan 26, 2005
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook