- 1,444

- 0

i need to show that [itex]A_x=-\frac{\mu_0 I}{4 \pi} \int_{-x}^x \frac{d \xi}{(\xi^2 + y^2 + z^2)^{-\frac{1}{2}}}[/itex]

i said [itex]|\mathbf{r-r'}|=\sqrt{(x-x')^2+(y-y')^2+(z-z')^2}[/itex]

then if we pick [itex]\mathbf{r'}[/itex] on the x axis, y'=z'=0

then we let [itex]\xi=x-x' \Rightarrow dl'=-d \xi[/itex]

so everything's looking good up till now but i can't get the limits on the integration to come out right.

x' goes between [itex]-\infty[/itex] and [itex]+\infty[/itex] btw

any ideas?