The integral of 1/x is ln(x). Where does that come from? That always puzzled me. We can continue to take derivatives through x^0 and into the negative integers, and just use the plain old power rule to get the answers. We can do the same for the integral of x all the way from negative exponents through positive exponents with the exception of x^-1. If we try to take the integral here, we get x^0/0, which is 1/0, and is undefined. OK, I get that, but how do we get a natural logarithm out of this undefined expression?(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integral of 1/x

Loading...

Similar Threads - Integral | Date |
---|---|

I Deriving a function from within an integral with known sol. | 12 minutes ago |

I Solving an integral | Monday at 4:38 PM |

I Integrate a function over a closed circle-like contour around an arbitrary point on a torus | Saturday at 12:51 PM |

A Integrate f(x) = tanh(c*x^b)? Wolfram says not possible ... | Mar 11, 2018 |

I Looking for additional material about limits and distributions | Feb 17, 2018 |

**Physics Forums - The Fusion of Science and Community**