I've been stuck on the following problem: If S is a closed surface that bounds the volume V, prove that: integral over this surface dS = 0.(adsbygoogle = window.adsbygoogle || []).push({});

I've been reading several textbooks that discuss flux, Stokes' Theorem, Divergence Theorem, but I can't seem to relate them to the problem I'm doing. The examples in the text all have a vector F and present the integral: integral over a surface of F dS, which I understand it as the flux. Is my case a flux problem? There is no vector F given in my problem.

Should I divide the closed surface into two halves and argue that pairs of normal vectors, one from each half cancel and therefore the integral over this surface dS = 0? What about Stokes' Theorem -- transforming it into a line integral?

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Integral of a closed surface

**Physics Forums | Science Articles, Homework Help, Discussion**