• Support PF! Buy your school textbooks, materials and every day products Here!

Integral of a log

  • Thread starter Mbert
  • Start date
  • #1
64
0

Homework Statement


Calculate the following integral:
[tex]\int_0^a{\left(y-m_1u-c_1\right)\log{\left[u^2+\left(y-m_1u-c_1\right)^2\right]}{\rm d}u}[/tex]
Where "a" is positive Real, "y, c, m" are Reals.


Homework Equations


[tex]\int{\log{\left[u^2+c^2\right]}{\rm d}u}=u\log{\left[u^2+c^2\right]}-2u+2c\arctan{(u/c)}[/tex]


The Attempt at a Solution


I'm not quite sure how to tackle this problem. With factors inside the log, that would've helped, but it is not the case. A hint would be appreciated.
 

Answers and Replies

  • #2
1,796
53
Need to try and encapsulate things to make it easier. Let y-c=k then you have:

[tex]2\int(k-mu)\log[u^2-mu+k]du[/tex]

You can complete the square right? Won't that get one part of it into the form you have? The other then is just a variable substitution say, v=u-c and you can solve:

[tex]\int v\log(v^2+h^2)dv[/tex]

right?
 
  • #3
SammyS
Staff Emeritus
Science Advisor
Homework Helper
Gold Member
11,256
974

Homework Statement


Calculate the following integral:
[tex]\int_0^a{\left(y-m_1u-c_1\right)\log{\left[u^2+\left(y-m_1u-c_1\right)^2\right]}{\rm d}u}[/tex]
Where "a" is positive Real, "y, c, m" are Reals.


Homework Equations


[tex]\int{\log{\left[u^2+c^2\right]}{\rm d}u}=u\log{\left[u^2+c^2\right]}-2u+2c\arctan{(u/c)}[/tex]


The Attempt at a Solution


I'm not quite sure how to tackle this problem. With factors inside the log, that would've helped, but it is not the case. A hint would be appreciated.
The integral under "Relevant equations" won't help directly, because there's a u in both terms of the integrand of the given definite integral.
 
  • #4
64
0
Shouldn't I get:

[tex]\int(k-mu)\log[(m^2+1)u^2-2mku+k^2]du[/tex]

Then, I can find the roots z1 and z2 of the polynomial and express the integral in the form:

[tex]\int(k-mu)\log[(u-z_1)(u-z_2)]du=\int(k-mu)\log[u-z_1]du+\int(k-mu)\log[u-z_2]du[/tex]

and then I integrate by parts with f=k-m*u and dg=log[u-z]?
 
  • #5
1,796
53
Ok. Sorry, I mis-read it. That looks good except I think you have to factor out the 1+m^2 before you find the roots and then write (I think):

[tex]\int (k-mu)\left[\log(1+m^2)+\log(u-a)+\log(u-b)\right]du[/tex]
 
Last edited:
  • #6
64
0
I think for the assumptions on k and m (Reals), the roots can be complex. Isn't there something special to do in that case? I think there is something about the complex plane and singularities, but it's been a while, can't remember very well.
 
  • #7
1,796
53
That brings up an interesting phenomenon in Complex Analysis. Essentially, as long as the antiderivative is differentiable along the entire path of integration, then we need only evaluate the antiderivative at the endpoints of the interval.


I don't think you'll encounter a problem with this integral though but not sure.
 
Last edited:
  • #8
64
0
Well, I should have a problem at u=z1 or u=z2, since there's a singularity at log(0). However, since I am integrating over the real axis, I guess I only get the singularities if z1 and z2 are reals?
 
  • #9
1,796
53
The integral would remain proper unless the zeros are along the path of integration.
 

Related Threads on Integral of a log

Replies
2
Views
3K
  • Last Post
2
Replies
26
Views
19K
  • Last Post
Replies
2
Views
3K
Replies
2
Views
2K
  • Last Post
Replies
10
Views
2K
Replies
4
Views
942
Replies
4
Views
7K
Replies
3
Views
816
  • Last Post
Replies
9
Views
11K
  • Last Post
Replies
1
Views
826
Top