[tex](adsbygoogle = window.adsbygoogle || []).push({});

sec(x) = \frac{2}{e^{ix}+e^{-ix}}

[/tex]

then i multply bot top and bottom by [tex] e^{ix} [/tex]

so i can do a u substitution

[tex] u=e^{ix} du=ie^{ix} [/tex]

so then [tex] \int {\frac{2du}{(u^2+1)i}}

=\frac {2arctan(u)}{i}} [/tex]

so then i turn the arctan into a log

then i get [tex] ln|e^{ix}+i|-ln|e^{ix}-i| + c [/tex]

then how do i get the real part out if this .

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integral of sec(x)

Loading...

Similar Threads - Integral | Date |
---|---|

I Deriving a function from within an integral with known sol. | Yesterday at 9:35 PM |

I Solving an integral | Monday at 4:38 PM |

I Integrate a function over a closed circle-like contour around an arbitrary point on a torus | Mar 17, 2018 |

A Integrate f(x) = tanh(c*x^b)? Wolfram says not possible ... | Mar 11, 2018 |

I Looking for additional material about limits and distributions | Feb 17, 2018 |

**Physics Forums - The Fusion of Science and Community**