[tex](adsbygoogle = window.adsbygoogle || []).push({});

sec(x) = \frac{2}{e^{ix}+e^{-ix}}

[/tex]

then i multply bot top and bottom by [tex] e^{ix} [/tex]

so i can do a u substitution

[tex] u=e^{ix} du=ie^{ix} [/tex]

so then [tex] \int {\frac{2du}{(u^2+1)i}}

=\frac {2arctan(u)}{i}} [/tex]

so then i turn the arctan into a log

then i get [tex] ln|e^{ix}+i|-ln|e^{ix}-i| + c [/tex]

then how do i get the real part out if this .

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integral of sec(x)

**Physics Forums | Science Articles, Homework Help, Discussion**