[tex](adsbygoogle = window.adsbygoogle || []).push({});

sec(x) = \frac{2}{e^{ix}+e^{-ix}}

[/tex]

then i multply bot top and bottom by [tex] e^{ix} [/tex]

so i can do a u substitution

[tex] u=e^{ix} du=ie^{ix} [/tex]

so then [tex] \int {\frac{2du}{(u^2+1)i}}

=\frac {2arctan(u)}{i}} [/tex]

so then i turn the arctan into a log

then i get [tex] ln|e^{ix}+i|-ln|e^{ix}-i| + c [/tex]

then how do i get the real part out if this .

**Physics Forums - The Fusion of Science and Community**

# Integral of sec(x)

Have something to add?

- Similar discussions for: Integral of sec(x)

Loading...

**Physics Forums - The Fusion of Science and Community**