Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Integral of vector product

  1. Mar 4, 2014 #1
    We know that: [tex]\frac{d}{dx}(\vec{f} \cdot \vec{g}) = \frac{d\vec{f}}{dx} \cdot \vec{g} + \vec{f} \cdot \frac{d\vec{g}}{dt}[/tex] and: [tex]\frac{d}{dx}(\vec{f} \times \vec{g}) = \frac{d\vec{f}}{dx} \times \vec{g} + \vec{f} \times \frac{d\vec{g}}{dt}[/tex] But, exist some formula (some expansion) for: [tex]\int \vec{f} \times \vec{g}\;\;dx[/tex] and for: [tex]\int \vec{f} \cdot \vec{g}\;\;dx[/tex] ?
  2. jcsd
  3. Mar 4, 2014 #2


    User Avatar
    Science Advisor

    The analogy with integration by parts would be
    [tex]\int\vec{f}\times\vec{g}dx= \vec{f}\times\int\vec{g}dx- \int \frac{d\vec{f}}{dx}\times \vec{g}dx[/tex]
    [tex]\int\vec{f}\cdot\vec{g}dx= \vec{f}\cdot\int\vec{g}dx- \int \frac{d\vec{f}}{dx}\cdot \vec{g}dx[/tex]

    can you use your derivative formulas to verify those?
  4. Mar 4, 2014 #3


    User Avatar
    Science Advisor
    Gold Member
    2017 Award

    I don't understand this conclusion. You get the integration-by-parts formula from integrating the differential expressions given in #1, e.g.,
    [tex]\frac{\mathrm{d}}{\mathrm{d} x} (\vec{f} \times \vec{g}) = \frac{\mathrm{d} \vec{f}}{\mathrm{d} x} \times \vec{g} + \vec{f} \times \frac{\mathrm{d} \vec{g}}{\mathrm{d} x}[/tex]
    wrt. [itex]x[/itex]
    [tex]\vec{f} \times \vec{g}=\int \mathrm{d} x \frac{\mathrm{d} \vec{f}}{\mathrm{d} x} \times \vec{g} + \int \mathrm{d} x \vec{f} \times \frac{\mathrm{d} \vec{g}}{\mathrm{d} x}[/tex]
    or bringing one term to the other side
    [tex]\int \mathrm{d} x \frac{\mathrm{d} \vec{f}}{\mathrm{d} x} \times \vec{g} = \vec{f} \times \vec{g} - \int \mathrm{d} x \vec{f} \times \frac{\mathrm{d} \vec{g}}{\mathrm{d} x}.[/tex]
    Last edited by a moderator: Mar 4, 2014
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook