Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I'm trying to evaluate this integral over a hemisphere:

[tex]\int cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} dw[/tex]

where dw - solid angle measure,[tex]\phi[/tex] is azimuthal angle and [tex]\theta[/tex]

is polar angle.

Thus we have:

[tex]\int cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} dw[/tex] = [tex]\int \int cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} * sin(\theta) d\theta d\phi[/tex].

over hemishere.

Integral = [tex]\int^{2 * pi}_{0} \int^{pi/2}_{0}cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} * sin(\theta) d\theta d\phi[/tex]

evaluate inner integral:

making substitution u = cos([tex]\theta[/tex]),

[tex]\int^{pi/2}_{0}cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} * sin(\theta) d\theta =

- \int^{pi/2}_{0}u^{a*cos^2(\phi) + b*sin^2(\phi)} du = \frac{1}{a*cos^2(\phi) + b*sin^2(\phi) + 1}[/tex]

That's where I get stuck with integration wrt [tex]\phi[/tex]

Apparently this integral has to evaluate to [tex]\frac{1}{\sqrt{(a+1)(b+1)}}[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integral Over A Hemishpere

**Physics Forums | Science Articles, Homework Help, Discussion**