1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Integral Problem

  1. Oct 8, 2012 #1
    Folks,

    I am trying to repeat what is in the book to calculate ##f_1^e##
    Given
    ##\displaystyle f_i^e=\int_{x_e}^{x_{e+1}} f \psi_i^e (x) dx##

    where ##\psi_1^e(x)=1- \frac{x}{h_e}##

    ##x_{e+1}-x_e=h_e##

    ##f(x)=6.25(1+x)##

    I calculate ##\displaystyle f_1^e=\int_{x_e}^{x_{e+1}} 6.25(1+x) (1-x/h_e) dx=6.25\int_{x_e}^{x_{e+1}} (1-x/h_e +x - x^2/h_e) dx##

    ##\displaystyle=6.25(x-\frac{x^2}{2h_e}+\frac{x^2}{2}-\frac{x^3}{3h_e})|_{x_e}^{x_{e+1}}##

    I am not sure how my work can arrive at the book answer below...?

    The book calculates ##\displaystyle f_1^e=\frac{6.25h_e}{2}(1 +\frac{x_{e+1}+2x_e}{3})##
     
  2. jcsd
  3. Oct 9, 2012 #2

    mathman

    User Avatar
    Science Advisor

    It doesn't look right. Check your function definitions.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook