Integral question

  • Thread starter jeanf
  • Start date
8
0

Main Question or Discussion Point

can someone show me how to do this integral:

[tex] \int \frac{(1-x)}{x^2} e^{x-1} dx[/tex]
 

Answers and Replies

TD
Homework Helper
1,020
0
Integration by parts works this way, but perhaps there's an easier way.

[tex]\begin{array}{l}
\int {\frac{{\left( {1 - x} \right)}}{{x^2 }}e^{x - 1} } dx = - \int {\left( {1 - x} \right)e^{x - 1} } d\left( {\frac{1}{x}} \right) = - \left( {\frac{{\left( {1 - x} \right)e^{x - 1} }}{x} - \int {\frac{1}{x}d\left( {\left( {1 - x} \right)e^{x - 1} } \right)} } \right) \\ \\
= - \frac{{\left( {1 - x} \right)e^{x - 1} }}{x} - \int {\frac{{ - xe^{x - 1} }}{x}dx} = - \frac{{\left( {1 - x} \right)e^{x - 1} }}{x} + e^{x - 1} + C = \frac{{e^{x - 1} }}{x} + C \\
\end{array}[/tex]
 
GCT
Science Advisor
Homework Helper
1,727
0
here's a simpler more "trivial" solution, by the way what's the derivative of e^x/x? hint, hint
[tex]I= \int \frac{(1-x)}{x^2} e^{x-1} dx[/tex]
[tex]=e^{-1} \int \frac{e^{x}dx}{x^{2}} -e^{-1} \int \frac{e^{x}dx}{x}[/tex]
[tex]J=\int \frac{e^{x}dx}{x^{2}} ,~K=\int \frac{e^{x}dx}{x}[/tex]
using integration by parts
[tex]K= \frac{e^{x}}{x}+ \int \frac{e^{x}dx}{x^{2}}[/tex]
[tex]I=e^{-1}J- \frac{e^{-1}e^{x}}{x} -e^{-1}J,~I= \frac{-e^{-1}e^{x}}{x}+C[/tex]
 

Related Threads for: Integral question

  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
3
Views
928
  • Last Post
Replies
6
Views
1K
  • Last Post
Replies
4
Views
992
  • Last Post
Replies
17
Views
4K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
3
Views
1K
  • Last Post
Replies
2
Views
2K
Top