Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I'm trying to find this integral:

[tex]

\int \frac{x}{(x+1)\sqrt{1-x^2}}\ dx

[/tex]

Because [itex]1-x^2[/itex] has two different real solutions, I can write

[tex]

\sqrt{ax^2 + bx + c} = \sqrt{-a}(x_2 - x)\sqrt{\frac{x-x_1}{x_2 - x}}

[/tex]

so

[tex]

\sqrt{1-x^2} = (-1 - x)\sqrt{\frac{x - 1}{-1 - x}} = (-1 - x)\sqrt{\frac{1-x}{1+x}}

[/tex]

I used this substitution:

[tex]

t = \sqrt{\frac{1-x}{1+x}}

[/tex]

It gives

[tex]

x = \frac{1-t^2}{1 + t^2}

[/tex]

[tex]

x + 1 = \frac{2}{1+t^2}

[/tex]

[tex]

dx = \frac{-4t}{(1+t^2)^2}

[/tex]

So

[tex]

\int \frac{x}{(x+1)\sqrt{1-x^2}}\ dx = \int \frac{ \frac{1-t^2}{1+t^2}}{\left(\frac{2}{1+t^2}\right)\left(\frac{-2}{1+t^2}\right)t}\ \ \frac{-4t}{(1+t^2)^2}\ dt

[/tex]

[tex]

= \int \frac{1-t^2}{1+t^2}\ dt = \int \frac{1}{1+t^2}\ dt - \int \frac{t^2}{1+t^2}\ dt = \arctan t -\ \int \frac{t^2}{1+t^2}\ dt

[/tex]

Damn I know I should be able to solve this integral, but I don't know how, maybe it's too late for me...

Btw the correct result should be:

[tex]

\int \frac{x}{(x+1)\sqrt{1-x^2}}\ dx = \sqrt{\frac{1-x}{1+x}} + 2\arctan \sqrt{\frac{1+x}{1-x}} + C

[/tex]

Thank you.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integral with square root

**Physics Forums | Science Articles, Homework Help, Discussion**