1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Integrate x/(2x+1) dx

  1. Mar 20, 2010 #1
    1. The problem statement, all variables and given/known data

    [tex]\int[/tex] x/(2x+1) dx

    2. Relevant equations



    3. The attempt at a solution

    I tried factoring out the 2 on the bottom to get 1/2 [tex]\int[/tex] x/(x+1/2). then I put 1/2 [tex]\int[/tex] x+(1/2)-(1/2)/(x+1/2) dx.

    from that i had, 1/2 [tex]\int[/tex]dx - 1/2[tex]\int[/tex]dx/(x+1/2)

    finally x/2 - 1/4 ln lx+1/2l + C


    My calculator keeps telling me it should be x/2 - 1/4 ln l2x+1l + C and every time try using a different trick i get a different answer. i'm sure i need to add 0, a-a, to get the answer but I can't figure out how to make it work.

    If someone could please help me out it and show the steps as to where i went wrong it would be much appreciated. Been racking my brain over this seemingly simple problem. just can't seem to make it work.
    1. The problem statement, all variables and given/known data



    2. Relevant equations



    3. The attempt at a solution
    1. The problem statement, all variables and given/known data



    2. Relevant equations



    3. The attempt at a solution
    1. The problem statement, all variables and given/known data



    2. Relevant equations



    3. The attempt at a solution
     
  2. jcsd
  3. Mar 20, 2010 #2

    Hurkyl

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Wait, why do you think those are different?
     
  4. Mar 20, 2010 #3

    Hurkyl

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    P.S. there is an easy way to check your answer, isn't there?
     
  5. Mar 20, 2010 #4

    CompuChip

    User Avatar
    Science Advisor
    Homework Helper

    They are, unless the C in one expression is not necessarily the C in the other expression :P
     
  6. Mar 20, 2010 #5
    Hey all, thanks for responding so quickly. I was able to figure out the problem. It was a simple issue of order of operations. When I factored out the 1/2 I didn't realize I have to basically wait till the end of the problem (when all within the brackets [well i wasn't using brackets, that was the problem] is simplified. That made everything work perfectly. whether factoring out a 1/2, or substituting x=u/2, it was all just a simple mistake. Thank god i noticed it now before i went on to my test! i only wonder how many times this mistake has been screwing me in the past!

    Also, I knew the answers were different because I graphed them and they were off slightly.

    ahh, off to bed.
     
  7. Mar 20, 2010 #6

    Hurkyl

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    You didn't graph the answers. You graphed one element from each family of answers. Those two particular functions were different, but why do you think the two families were different?
     
  8. Mar 20, 2010 #7
    Probably because this is all new to me:) I'm not sure I follow. Are you talking about how each solvable indefinite integral has an infinite number of answers all dependent on "+C"? (The graphs were identical except for a small shift in the y-direction).

    If that is so then does it matter when i distribute the 1/2 in the front? If I wait until the end of the problem I get the calculator answer. If I distribute it earlier I get my answer.

    are the two answers equal except for the constant +C? If so, how would I manipulate the constant to have them be identical?

    If that made no sense I'm sorry, like I said i'm still new to this. To me indefinite integrals don't really mean much. I grasp that an integral is the area under a line or curve (a definite integral), but it just seems indefinite integrals are the half-assed version of a definite integral. What else does it tell you?
     
  9. Mar 20, 2010 #8
    Manipulating your "calculator answer":
    [tex]\frac{x}{2}\, -\, \frac{1}{4} ln |2x+1|\, +\, C = \frac{x}{2}\, -\, \frac{1}{4} ln (|2||x + \frac{1}{2}|)\, +\, C = \frac{x}{2}\, -\, \frac{1}{4} ln |x + \frac{1}{2}| \,-\, \frac{1}{4} ln 2 \,+\, C = \frac{x}{2}\, -\, \frac{1}{4} ln |x + \frac{1}{2}|\, +\, C'[/tex]
     
  10. Mar 20, 2010 #9
    Thanks! god it seems to me most of the time that calculus is easy... it's the algebra that I took in 1996 that's what gets me (and most of my class actually).

    But thanks again.
     
  11. Mar 20, 2010 #10
    when I take the derivative of either my answer or the calculator answer I get:

    [tex]\frac{x}{2}[/tex] - [tex]\frac{1}{4x+2}[/tex]

    But I can't seem to manipulate that answer to get the original fraction:

    [tex]\frac{x}{2x+1}[/tex]


    Any ideas?
     
  12. Mar 20, 2010 #11

    CompuChip

    User Avatar
    Science Advisor
    Homework Helper

    You made a little mistake in your calculation (you copied the x/2 instead of differentiating it).

    Then, how do you add two fractions (like 1/3 and 2/5)?
     
  13. Mar 20, 2010 #12
    ah, got it, thanks!
     
  14. Apr 4, 2010 #13
    The "two" answers are in reality one and the same answer, with C-ln(2)=C'
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Integrate x/(2x+1) dx
  1. Integral ∫(1/2x)dx (Replies: 1)

Loading...