1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Integrating H(t-pi/2)*sin(2t)

  1. May 22, 2013 #1
    1. The problem statement, all variables and given/known data

    Integrate π H(t-π/2)*sin(2t)dt

    2. Relevant equations

    See above.

    3. The attempt at a solution

    I can rationalize the slightly simpler integral for the same limits of H(t)*sin(2t) as coming out to 0 due to the definition of the unit step function, but I'm wondering if the subtraction of π/2 changes it any. It's still integrating over the range of H(t), correct? So should it still work out to be 0?
     
  2. jcsd
  3. May 22, 2013 #2

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    [itex]H(t- \pi/2)[/itex] is equal to 0 for [itex]t< \pi/2[/itex], 1 for [itex]t\ge \pi/2[/itex]. So that integral is just
    [tex]\int_{\pi/2}^\pi sin(2t)dt[/tex]
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Integrating H(t-pi/2)*sin(2t)
  1. Sin(t) cos(2t) = ? (Replies: 3)

  2. Integral of e^t*H(t)? (Replies: 5)

Loading...