- #1
Chaz706
- 13
- 0
I have the following Integral
[tex] \int ^1 _0 [/tex] [tex] \int _0 ^\sqrt{1-x^2} [/tex] [tex] \int _0 ^\sqrt{1-x^2-y^2} [/tex] [tex] \frac{1}{1+(x^2)+(y^2)+(z^2)} dzdydx [/tex]
(With the limits working properly!)
Converted to spherical Cor-ordinates, I have
[tex] \int ^\frac{\pi}{2} _0 [/tex] [tex] \int _0 ^\frac{\pi}{2} [/tex] [tex] \int _0 ^1 [/tex] [tex] \frac{1}{1+\rho} \rho^2 sin(\phi) d\rho dr d\phi [/tex]
I've converted the function, but how would I start integrating?
[tex] \int ^1 _0 [/tex] [tex] \int _0 ^\sqrt{1-x^2} [/tex] [tex] \int _0 ^\sqrt{1-x^2-y^2} [/tex] [tex] \frac{1}{1+(x^2)+(y^2)+(z^2)} dzdydx [/tex]
(With the limits working properly!)
Converted to spherical Cor-ordinates, I have
[tex] \int ^\frac{\pi}{2} _0 [/tex] [tex] \int _0 ^\frac{\pi}{2} [/tex] [tex] \int _0 ^1 [/tex] [tex] \frac{1}{1+\rho} \rho^2 sin(\phi) d\rho dr d\phi [/tex]
I've converted the function, but how would I start integrating?
Last edited: