- #1

Chaz706

- 13

- 0

I have the following Integral

[tex] \int ^1 _0 [/tex] [tex] \int _0 ^\sqrt{1-x^2} [/tex] [tex] \int _0 ^\sqrt{1-x^2-y^2} [/tex] [tex] \frac{1}{1+(x^2)+(y^2)+(z^2)} dzdydx [/tex]

(With the limits working properly!)

Converted to spherical Cor-ordinates, I have

[tex] \int ^\frac{\pi}{2} _0 [/tex] [tex] \int _0 ^\frac{\pi}{2} [/tex] [tex] \int _0 ^1 [/tex] [tex] \frac{1}{1+\rho} \rho^2 sin(\phi) d\rho dr d\phi [/tex]

I've converted the function, but how would I start integrating?

[tex] \int ^1 _0 [/tex] [tex] \int _0 ^\sqrt{1-x^2} [/tex] [tex] \int _0 ^\sqrt{1-x^2-y^2} [/tex] [tex] \frac{1}{1+(x^2)+(y^2)+(z^2)} dzdydx [/tex]

(With the limits working properly!)

Converted to spherical Cor-ordinates, I have

[tex] \int ^\frac{\pi}{2} _0 [/tex] [tex] \int _0 ^\frac{\pi}{2} [/tex] [tex] \int _0 ^1 [/tex] [tex] \frac{1}{1+\rho} \rho^2 sin(\phi) d\rho dr d\phi [/tex]

I've converted the function, but how would I start integrating?

Last edited: