- #1

- 264

- 0

## Homework Statement

[tex]\int\sin(6\theta) d\theta[/tex]

## Homework Equations

## The Attempt at a Solution

[tex]\int6\cos6\theta[/tex]

Am I close?

- Thread starter duki
- Start date

- #1

- 264

- 0

[tex]\int\sin(6\theta) d\theta[/tex]

[tex]\int6\cos6\theta[/tex]

Am I close?

- #2

- 1,341

- 3

Or you could think of it like this:

If we take the derivative of [tex]\frac{d}{d \theta}(-cos(\theta)) = sin(\theta)[/tex]. That's sort of like the anti-derivative which you seek.

If we take the derivative of [tex]\frac{d}{d \theta}(-cos(6 \theta)) = 6sin(6 \theta)[/tex].

So from there it's easy to see that[tex]\int\sin(6\theta) d\theta = \frac{-cos(6\theta)}{6}[/tex]

- #3

- 264

- 0

errr...

[tex]\frac{-\cos6\theta}{6}[/tex]

[tex]\frac{-\cos6\theta}{6}[/tex]

- #4

- 264

- 0

thanks :)

- #5

- 1,341

- 3

Yeah looks right^^

- Last Post

- Replies
- 6

- Views
- 858

- Last Post

- Replies
- 2

- Views
- 1K

- Last Post

- Replies
- 7

- Views
- 15K

- Last Post

- Replies
- 3

- Views
- 2K

- Last Post

- Replies
- 13

- Views
- 3K

- Last Post

- Replies
- 4

- Views
- 1K

- Last Post

- Replies
- 9

- Views
- 709

- Last Post

- Replies
- 5

- Views
- 7K

- Last Post

- Replies
- 2

- Views
- 1K

- Last Post

- Replies
- 11

- Views
- 1K