# Integration by parts constants

#### Yegor

It's not homework, but i think it can make someone think a little.
$$\int\frac{dx}{x}$$
Take it by parts.
If you'll be as careless as me you can make a discovery :rofl:

Last edited:

Homework Helper
Gold Member
Dearly Missed
Set v'=1/x, u=1.

#### HallsofIvy

Homework Helper
I'm clearly not understanding this (and it really belongs in the Calculus section rather than Homework).

Using arildno's suggestion: $$dv= \frac{1}{x}dx$$, u= 1 just means that you have to integrate $$\int\frac{dx}{x}$$ directly.

The only other possibility is dv= dx, $$u= \frac{1}{x}$$ so that v= x, $$du= \frac{-1}{x^2}$$. Then integration by parts gives $$\int\frac{dx}{x}= (x)\frac{1}{x}- \int\frac{-xdx}{x^2}= 1+ \int\frac{dx}{x}$$ which is certainly true allowing for different constants of integration.

Last edited by a moderator:

#### arildno

Homework Helper
Gold Member
Dearly Missed
It was a trick question, HallsofIvy:
He wanted to see if someone besides himself made a sign error so that you "get", say:
$$\int\frac{dx}{x}=1-\int\frac{dx}{x}\to\int\frac{dx}{x}=\frac{1}{2}$$

#### dextercioby

Homework Helper
Nope,my guess is it must have been 1=0.

Daniel.

#### Jameson

This can applied to any basic integral. Example:

$$\int xdx$$

I'll take this by parts.

dv = x
u = 1

$$\int udv = uv-\int vdu$$

$$\int xdx = 1*\frac{x^2}{2}-\int \frac{x^2}{2}*0dx + C_1$$

The $C_1$ from the first integral and the $C_2$ from $\int 0 dx$ can just be called $C$

So the resulting answer is the same:

$$\int xdx = \frac{x^2}{2} + C$$

I'm sorry to say I find this a little pointless...

#### arildno

Homework Helper
Gold Member
Dearly Missed
Of course you can do that, Jameson.
I wasn't particularly serious about the whole thing, since the original post was, after all, rather silly.

#### Jameson

I wasn't directing that at you... it was to the OP. I think it's agreed that this is silly.

#### arildno

Homework Helper
Gold Member
Dearly Missed
Allright.
But, to take the thread into a bit of defense:
I'm sure we can recognize Yegor's feeling:
We do a calculation over and over again and get some complete nonsense out of it.

Then, slapping our head, we realize what an idiotic mistake we've made, and will start laughing over the whole matter .
I don't think Yegor ever meant it to be serious, since he had a :rofl: in his post, and perhaps want to share the joke with others.

#### Yegor

Of course i disappoint you, but i meant exactly what Daniel wrote (0=1).
I just had some associations with $$\int e^{ax}\sin(bx)dx$$, where we have to make similar trick. And that's why posted it here.
Don't be so strict, please, if someone isn't so brainy as you and pays attention to silly things.

#### dextercioby

Homework Helper
This is for Arildno: :tongue: My intuition was simply sublime  Daniel.

P.S.Yegor,only smart people learn from mistakes.Welcome aboard !! #### arildno

Homework Helper
Gold Member
Dearly Missed
Yes, you were absolutely divine today, daniel.

#### arildno

Homework Helper
Gold Member
Dearly Missed
Yegor said:
Of course i disappoint you, but i meant exactly what Daniel wrote (0=1).
I just had some associations with $$\int e^{ax}\sin(bx)dx$$, where we have to make similar trick. And that's why posted it here.
Don't be so strict, please, if someone isn't so brainy as you and pays attention to silly things.
Okay, sorry that I phrased myself in a manner which seemed contemptuous towards you. That was not my intent at all, but evidently the result anyway.

### Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving