- #1

- 287

- 0

this no homework, but nevertheless can someone hint me how this integration by parts works?

[tex]

\int {d^4 } x\frac{{\partial L}}{{\partial \left( {\partial _\mu \phi } \right)}}\partial _\mu (\delta \phi ) = {\rm{ }} - \int {d^4 } x\partial _\mu \left( {\frac{{\partial L}}{{\partial (\partial _\mu \phi )}}} \right)\delta \phi {\rm{ }} + {\rm{ }}\int {d^4 } x{\rm{ }}\partial _\mu \left( {\frac{{\partial L}}{{\partial (\partial _\mu \phi )}}\delta \phi } \right)

[/tex]

where [tex]

L(\phi ,\partial _\mu \phi )

[/tex]

I don't understand where the second term on the RHS comes from. I thought the second term should be [tex]

\frac{{\partial L}}{{\partial (\partial _\mu \phi )}}\delta \phi \left| {^b _a } \right. = 0

[/tex]

thanks

[tex]

\int {d^4 } x\frac{{\partial L}}{{\partial \left( {\partial _\mu \phi } \right)}}\partial _\mu (\delta \phi ) = {\rm{ }} - \int {d^4 } x\partial _\mu \left( {\frac{{\partial L}}{{\partial (\partial _\mu \phi )}}} \right)\delta \phi {\rm{ }} + {\rm{ }}\int {d^4 } x{\rm{ }}\partial _\mu \left( {\frac{{\partial L}}{{\partial (\partial _\mu \phi )}}\delta \phi } \right)

[/tex]

where [tex]

L(\phi ,\partial _\mu \phi )

[/tex]

I don't understand where the second term on the RHS comes from. I thought the second term should be [tex]

\frac{{\partial L}}{{\partial (\partial _\mu \phi )}}\delta \phi \left| {^b _a } \right. = 0

[/tex]

thanks

Last edited: