1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Integration by Parts

  1. Oct 24, 2006 #1
    Problem:
    [tex]\int\frac{dx}{a^2-x^2}[/tex]
    My Work:
    [tex]\frac{1}{a^2-x^2}[/tex]
    [tex]=\frac{1}{(a+x)(a-x)}=\frac{A}{a+x}+\frac{B}{a-x}}[/tex]
    [tex]1=A(a-x)+B(a+x)[/tex]
    If x=a, then [tex]1=2Ba[/tex] so [tex]B=\frac{1}{2a}[/tex]
    Thus [tex]1=A(a-x)+\frac{1}{2a}(a+x)[/tex]
    if x=0, then [tex]1=Aa+\frac{1}{2}[/tex] so [tex] A=\frac{1}{2a}[/tex]
    SO
    [tex]\int\frac{dx}{a^2-x^2}[/tex]
    [tex]=\int\frac{\frac{1}{2a}}{a+x}+\frac{\frac{1}{2a}}{a-x}dx[/tex]
    [tex]=\frac{1}{2a}\int\frac{dx}{a+x}+\frac{1}{2a}\int\frac{dx}{a-x}[/tex]
    [tex]=\frac{1}{2a}\ln\mid a+x\mid +\frac{1}{2a}\ln\mid a-x\mid(-1)[/tex]
    [tex]=\frac{1}{2a}(\ln\mid a+x\mid -\ln\mid a-x\mid)[/tex]
    [tex]=\frac{1}{2a}\ln\mid\frac{a+x}{a-x}\mid +C[/tex]

    Table of integrals gives correct answer as
    [tex]=\frac{1}{2a}\ln\mid\frac{x+a}{x-a}\mid +C[/tex]

    My gut feeling is that I messed up integrating [tex]\int\frac{dx}{a-x}[/tex] but I can't find my error.
    Any help would be appreciated.
     
  2. jcsd
  3. Oct 24, 2006 #2
    Its the same thing, because its in absolute values.
     
  4. Oct 24, 2006 #3
    :redface: Thanks, Courtrigrad.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook




Loading...
Similar Threads for Integration Parts Date
Integration by parts/substitution Nov 2, 2017
Solving an Integral Sep 23, 2017
Integration by parts problem Jul 18, 2017
Integration by Parts Twice Feb 21, 2017