I'm new to Mathematica. I used it to integrate the scalar field(adsbygoogle = window.adsbygoogle || []).push({});

[tex]f:\mathbb{R}^3 \to \mathbb{R} \; \bigg| \;f(x,y,x)=z^2[/tex]

over the top half of a unit sphere centered on the origin, paramaterising this surface with

[tex]\phi: \mathbb{R}^2 \rightarrow \mathbb{R}^3 \; \bigg| \; \phi(r,\theta)=(r \cos \theta, r \sin \theta, \sqrt{1-r^2})[/tex]

so that

[tex]f(\phi(r,\theta))=1-r^2.[/tex]

I set up the integral like this:

[tex]\int_R f(\phi(r,\theta))\left \| \partial_r \phi \times \partial_\theta \phi \right \| dr d\theta = \int_0^{2\pi} \int_0^1 r \sqrt{1-r^2} \; dr d\theta = \frac{2 \pi}{3}[/tex]

where the partial sign (curly d) with subscript variable stands for the partial derivative with respect to that variable, ||v|| denotes the norm (a.k.a. magnitude) of a vector v, and the times symbol, x, is the cross product of vectors.

In Mathematica, I was able to calculate this as follows:

phi={r*Cos[theta],r*Sin[theta],Sqrt[1-r^2]}; Integrate[phi[[3]]^2*Norm[Cross[D[phi,r],D[phi,theta]]],{theta,0,2*Pi},{r,0,1}]

and also, in the following two different ways, by plugging in the already simplified integrand:

Integrate[r*Sqrt[1-r^2],{theta,0,2*Pi},{r,0,1}]

Integrate[Integrate[r*Sqrt[1 - r^2], {r, 0, 1}], {theta, 0, 2*Pi}]

But the last of these methods didn't work when I used the unsimplified expression phi[[3]]^2*Norm[Cross[D[phi,r],D[phi,theta]]] in place of r*Sqrt[1 - r^2].

Integrate[

Integrate[

phi[[3]]^2*Norm[Cross[D[phi, r], D[phi, theta]]], {r, 0,

1}], {theta, 0, 2*Pi}]

It took a long time to calculate, then produced many lines of complicated symbolic expressions involving complex numbers and hyperbolic trig functions. A similar thing happened when I asked it to calculate just the inner integral:

Integrate[phi[[3]]^2*Norm[Cross[D[phi, r], D[phi, theta]]], {r, 0, 1}]

Can anyone tell me what went wrong: why the simplified expression worked with both methods, Integrate[ ,{ },{ }] and Integrate[Integrate[ ,{ }],{ }], but the equivalent full one only worked by the first method, Integrate[ ,{ },{ }]? Something to do with the order of operations that leads it to try dividing by something unpleasant, or am I making an elementary syntactic mistake?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Integration in Mathematica

**Physics Forums | Science Articles, Homework Help, Discussion**