- #1

- 211

- 2

[tex] \vec F = \frac {d} {dt} \vec p [/tex] where [tex] \vec F = (0, F_{y},0) [/tex] and [tex] \vec {p} [/tex] can be written as [tex] \vec p = m_{o} \vec u / \sqrt {1 - u^{2}/c^{2} }[/tex]

At time t = 0, [tex] \vec u = (0,u_{o},0) [/tex]

When I replace p with its equivalent in u I get into trouble because [tex]u^{2} = \vec u \cdot \vec u [/tex] and so both integrals involve both x & y components.