- #1
Precursor
- 222
- 0
Homework Statement
Use appropriate substitution and than a trigonometric substitution and evaluate the integral.
[tex]\int_{1}^{e}\frac{dy}{y\sqrt{1 + (lny)^{2}}}[/tex]
The attempt at a solution
[tex]\int_{1}^{e}\frac{dy}{y\sqrt{1 + (lny)^{2}}}[/tex]
[tex]ln y = tan\theta[/tex]
[tex]y = cos^{2}\theta[/tex]
[tex]dy = -2cos\theta sin\theta d\theta[/tex]
[tex]= -2\int_{1}^{e}\frac{cos\theta sin\theta d\theta}{cos^{2}\theta\sqrt{1 + tan^{2}\theta}}[/tex]
[tex]= -2\int_{1}^{e}\frac{sin\theta d\theta}{cos\theta sec\theta}[/tex]
[tex]= -2\int_{1}^{e}sin\theta d\theta[/tex]
How do I proceed from here? I think I have to change the limits of integration in terms of [tex]\theta[/tex] instead of [tex]y[/tex].
Use appropriate substitution and than a trigonometric substitution and evaluate the integral.
[tex]\int_{1}^{e}\frac{dy}{y\sqrt{1 + (lny)^{2}}}[/tex]
The attempt at a solution
[tex]\int_{1}^{e}\frac{dy}{y\sqrt{1 + (lny)^{2}}}[/tex]
[tex]ln y = tan\theta[/tex]
[tex]y = cos^{2}\theta[/tex]
[tex]dy = -2cos\theta sin\theta d\theta[/tex]
[tex]= -2\int_{1}^{e}\frac{cos\theta sin\theta d\theta}{cos^{2}\theta\sqrt{1 + tan^{2}\theta}}[/tex]
[tex]= -2\int_{1}^{e}\frac{sin\theta d\theta}{cos\theta sec\theta}[/tex]
[tex]= -2\int_{1}^{e}sin\theta d\theta[/tex]
How do I proceed from here? I think I have to change the limits of integration in terms of [tex]\theta[/tex] instead of [tex]y[/tex].
Last edited: