Problem:(adsbygoogle = window.adsbygoogle || []).push({});

(a) If [tex]f[/tex] is one-to-one and [tex]f^{\prime}[/tex] is continuous, prove that

[tex]\int _a ^b f(x) \: dx = bf(b) - af(a) - \int _{f(a)} ^{f(b)} f ^{-1} (y) \: dy[/tex]

(b) In the case where [tex]f[/tex] is a positive function and [tex]b > a > 0[/tex], draw a diagram to give a geometric interpretation of part (a).

My work:

(a) [tex]\int _a ^b f(x) \: dx[/tex]

Integrating by parts gives

[tex]u = f(x) \Rightarrow \frac{du}{dx} = f ^{\prime} (x) \Rightarrow du = f ^{\prime} (x) \: dx[/tex]

[tex]dv = dx \Rightarrow v = x[/tex]

[tex]\int _a ^b f(x) \: dx = \left. xf(x) \right] _a ^b - \int _a ^b x f ^{\prime} (x) \: dx[/tex]

[tex]\int _a ^b f(x) \: dx = bf(b) - af(a) - \int _a ^b x f ^{\prime} (x) \: dx[/tex]

Applying the Substitution Rule gives

[tex] y = f(x) \Leftrightarrow x = f^{-1} (y) \Rightarrow \frac{dy}{dx} = f ^{\prime} (x) \Rightarrow dx = \frac{dy}{f ^{\prime} (x)}[/tex]

[tex]y(b) = f(b)[/tex]

[tex]y(a) = f(a)[/tex]

[tex]\int _a ^b f(x) \: dx = bf(b) - af(a) - \int _{f(a)} ^{f(b)} f ^{-1} (y) \: dy[/tex]

(b) I'm not sure how I should handle this one. The left-hand side is quite easy to visualize: it corresponds to a generic integral from a to b. The right-hand side does not seem to be that simple, and I need some help.

Any help is highly appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Integration problem

**Physics Forums | Science Articles, Homework Help, Discussion**