1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Integration question

  1. Jun 22, 2011 #1
    1. The problem statement, all variables and given/known data

    [itex]\int_{-B}^{B}\frac{\sqrt{B^2 - y^2}}{1-y} dy[/itex]

    2. Relevant equations



    3. The attempt at a solution

    I tried to get rid of the square root thing, so I started by:

    [itex] y = B sin \theta, [/itex]
    [itex] dy = B cos \theta d\theta, [/itex]

    then the integral above becomes:

    [itex]B^2 \int_{0}^{\pi} \frac{\sin^2 \theta d\theta}{1-Bcos\theta}d\theta.[/itex]

    Now my question is, how to integrate this out?
     
  2. jcsd
  3. Jun 22, 2011 #2
    Hi deftist!

    The trick is to do the subtitution

    [tex]t=\tan(\theta /2)[/tex]

    and to apply the formula's

    [tex]\sin(\theta)=\frac{2t}{1+t^2},~~\cos(\theta)=\frac{1-t^2}{1+t^2},~~\tan(\theta)=\frac{2t}{1-t^2}[/tex]
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook