- #1
- 655
- 0
Homework Statement
Using the substitution u² = 2x - 1, or otherwise, find the exact value of
[tex]\int^{5}_{1} \frac{3x}{\sqrt{2x-1}}dx[/tex]
The Attempt at a Solution
Right let's rearrange u in terms of x (i think that's how you say it):
[tex] x = \frac{u^{2} - 1}{2}[/tex]
And now get an expression for dx
[tex]u = (2x-1)^{\frac{1}{2}}[/tex]
use the chain rule on it to give
[tex]\frac{dx}{du} (2x-1)^{-\frac{1}{2}}[/tex]
= [tex]dx = \frac{du}{(2x-1)^{-\frac{1}{2}}}[/tex]
Right now substitute that in
[tex]\int^{5}_{1} \frac{3\frac{u^{2} - 1}{2}}{u}\frac{du}{(2x-1)^{-\frac{1}{2}}}[/tex]
now according to the mark scheme
[tex]\int^{5}_{1} \frac{3\frac{u^{2} - 1}{2}}{u}\frac{du}{(2x-1)^{-\frac{1}{2}}}[/tex]
can be simplified
[tex]\int^{5}_{1} \frac{3u^{2} - 3}{2u}\frac{du}{(2x-1)^{-\frac{1}{2}}}[/tex]
shouldn't the bit here:
[tex]\frac{3u^{2} - 3}{2u}[/tex]
be
[tex]\frac{3u^{2} - 3}{6u}[/tex]
Last edited: