(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Using the substitution u² = 2x - 1, or otherwise, find the exact value of

[tex]\int^{5}_{1} \frac{3x}{\sqrt{2x-1}}dx[/tex]

3. The attempt at a solution

Right lets rearrange u in terms of x (i think that's how you say it):

[tex] x = \frac{u^{2} - 1}{2}[/tex]

And now get an expression for dx

[tex]u = (2x-1)^{\frac{1}{2}}[/tex]

use the chain rule on it to give

[tex]\frac{dx}{du} (2x-1)^{-\frac{1}{2}}[/tex]

= [tex]dx = \frac{du}{(2x-1)^{-\frac{1}{2}}}[/tex]

Right now substitute that in

[tex]\int^{5}_{1} \frac{3\frac{u^{2} - 1}{2}}{u}\frac{du}{(2x-1)^{-\frac{1}{2}}}[/tex]

now according to the mark scheme

[tex]\int^{5}_{1} \frac{3\frac{u^{2} - 1}{2}}{u}\frac{du}{(2x-1)^{-\frac{1}{2}}}[/tex]

can be simplified

[tex]\int^{5}_{1} \frac{3u^{2} - 3}{2u}\frac{du}{(2x-1)^{-\frac{1}{2}}}[/tex]

shouldn't the bit here:

[tex]\frac{3u^{2} - 3}{2u}[/tex]

be

[tex]\frac{3u^{2} - 3}{6u}[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Intergration by substitution

**Physics Forums | Science Articles, Homework Help, Discussion**