(adsbygoogle = window.adsbygoogle || []).push({});

[tex]g_{tt} = \left\{ \begin{array}{rcl} \frac{3}{2} \left( 1 - \frac{2GM(r)}{c^2 R} \right)^{\frac{1}{2}} - \frac{1}{2} \left( 1 - \frac{2 G M(r) r^2}{c^2 R^3} \right)^{\frac{1}{2}} \; \; \text{for} \; \; 0 \leq r \leq R \; \text{(interior)} \\ \left( 1 - \frac{2GM(r)}{c^2 R} \right) \; \; \text{for} \; \; r > R \; \text{(Schwarzchild)} \\ \end{array} \right.[/tex] ref. 1 - pg. 17 said:Recalling that Birkhoff's theorem guarantees that the exterior spacetime will be the Schwarzchild one, we easily deduce that the metric functions will be given by:

[tex]g_{rr} = \left\{ \begin{array}{rcl} \left( 1 - \frac{2G}{c^2 r} \frac{4 \pi r^3}{3} \rho_0 \right)^{-1} \; \; \text{for} \; \; 0 \leq r \leq R \; \text{(interior)} \\ \left( 1 - \frac{2G M(r)}{c^2 r} \right)^{-1} \; \; \text{for} \; \; r > R \; \text{(Schwarzchild)} \\ \end{array} \right.[/tex]

My question is theoretical, why would the relativistic Equation of State for hydrostatic equilibrium be based on the exterior metric as opposed to the interior metric?

What are the formal equation definitions for [tex]g_{\theta \theta}[/tex] and [tex]g_{\phi \phi}[/tex] for the interior metric?

Reference:

http://www.infn.it/thesis/PDF/getfile.php?filename=3852-Mana-specialistica.pdf"

http://en.wikipedia.org/wiki/Birkhoff%27s_theorem_%28relativity%29" [Broken]

http://en.wikipedia.org/wiki/Tolman%E2%80%93Oppenheimer%E2%80%93Volkoff_equation" [Broken]

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Interior metric solution

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**