Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Interior metric solution

  1. Mar 13, 2010 #1

    [tex]g_{tt} = \left\{ \begin{array}{rcl} \frac{3}{2} \left( 1 - \frac{2GM(r)}{c^2 R} \right)^{\frac{1}{2}} - \frac{1}{2} \left( 1 - \frac{2 G M(r) r^2}{c^2 R^3} \right)^{\frac{1}{2}} \; \; \text{for} \; \; 0 \leq r \leq R \; \text{(interior)} \\ \left( 1 - \frac{2GM(r)}{c^2 R} \right) \; \; \text{for} \; \; r > R \; \text{(Schwarzchild)} \\ \end{array} \right.[/tex]

    [tex]g_{rr} = \left\{ \begin{array}{rcl} \left( 1 - \frac{2G}{c^2 r} \frac{4 \pi r^3}{3} \rho_0 \right)^{-1} \; \; \text{for} \; \; 0 \leq r \leq R \; \text{(interior)} \\ \left( 1 - \frac{2G M(r)}{c^2 r} \right)^{-1} \; \; \text{for} \; \; r > R \; \text{(Schwarzchild)} \\ \end{array} \right.[/tex]

    My question is theoretical, why would the relativistic Equation of State for hydrostatic equilibrium be based on the exterior metric as opposed to the interior metric?

    What are the formal equation definitions for [tex]g_{\theta \theta}[/tex] and [tex]g_{\phi \phi}[/tex] for the interior metric?

    Reference:
    http://www.infn.it/thesis/PDF/getfile.php?filename=3852-Mana-specialistica.pdf"
    http://en.wikipedia.org/wiki/Birkhoff%27s_theorem_%28relativity%29" [Broken]
    http://en.wikipedia.org/wiki/Tolman%E2%80%93Oppenheimer%E2%80%93Volkoff_equation" [Broken]
     
    Last edited by a moderator: May 4, 2017
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted