1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Intermediate Value Theorem

  1. Sep 14, 2008 #1
    I typed this in maple and I could not convert it into latex. I included line numbering in the pdf. If u need to quote just quote the line numbers. Sorry for any inconvenience caused.

    http://i359.photobucket.com/albums/oo31/tanzl/IntermediateValueTheorem.jpg

    I try to do this question but I am not really what the question want. I will appreciate if anyone can tell me my mistakes. Thanks.
     
  2. jcsd
  3. Sep 14, 2008 #2

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    You must have some conditions on the function phi, right? I'm guessing it's continuous and bounded? Sorry, but the proof so far isn't making a whole lot of sense. Don't you have a theorem that tells you that a continuous function on a closed bounded interval has a minimum? Can you show you only need to consider a bounded interval and not the whole real line since n is even?
     
  4. Sep 15, 2008 #3
  5. Sep 15, 2008 #4

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    That's better, but I still don't think it really works. And thanks for including the conditions on phi this time. Your original M is really a function of your original a, M(a) and you sort of have to nail down a and M(a) at the same time. Let's write f(x)=x^4+phi(x). I'd do something like this. Start by showing lim f(x)=infinity as x goes to +/-infinity. Pick a definite value of x, say f(0). Can you define an interval [-a,a] such that f(x)>f(0) for x<-a or x>a? Then the global min f(y) is the minimum of f on [-a,a].
     
  6. Sep 15, 2008 #5
    Can you explain more about this? Because I dont really got your idea.
    I don understand why I need to show that lim f(x)=infinity as x goes to +/-infinity.

    Pick a definite value of x, say f(0). Can you define an interval [-a,a] such that f(x)>f(0) for x<-a or x>a?
    I think this is something like the idea in my proof but instead makes the minimum becomes an arbitrary point, M(a).

    Then the global min f(y) is the minimum of f on [-a,a].
    What implies that global min f(y) is the minimum of f on [-a,a]?

    Sorry for asking so many questions but I don really understand.
     
  7. Sep 15, 2008 #6

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    The idea is that I can find a min of f(x) on any closed bounded interval. To make sure that's the global min I ensure that f(x) for ALL x outside the interval is greater than SOME value of f inside the interval. Showing f(x)->infinity isn't really a problem since x^n goes to infinity and your condition psi(x)/x^n shows psi isn't very important. BTW, sorry, I've been writing x^4 rather than x^n once in a while. Change it for me, ok?
     
  8. Sep 16, 2008 #7
  9. Sep 16, 2008 #8

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    It's still WAY too complicated. Just i) prove f(x)->infinity. ii) Pick a number N>f(0). Then since f(x)->infinity there is an interval [-a,a] such that f(x)>=N for x outside of [-a,a]. So the min over [-a,a] is the global min. That's it. I don't think you need a lot of that other stuff. And don't pick an 'arbitrary interval [-a,a]' first. An arbitrary interval won't work. The size of the interval has to be based on the values of f.
     
  10. Sep 20, 2008 #9
  11. Sep 20, 2008 #10

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    But the minimum on the interval [-a,a] is not necessarily the global minimum until you say what 'a' is. My suggestion was to first pick any value f(x0) of the function and THEN choose a so you are sure that f(x) is greater then f(x0) using the fact f->infinity. THEN you have an interval to choose the global min on (which may not be f(x0)).
     
  12. Sep 21, 2008 #11
    But if the interval a is big enough, then it will includes the global minimum. Isnt it?
     
  13. Sep 21, 2008 #12

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    Sure, but how do you make sure that 'a' is big enough? Yes, later on you pick an 'a' based on the fact f(x)->infinity. But then what was the first 'a' for? I would start with a blank screen and rewrite the proof rather than tinkering with the wording on the existing proof. Parts of the proof are just leftovers from previous versions and don't really do anything. If you can get the proof to about half it's current size, it's probably pretty close to correct.
     
  14. Sep 21, 2008 #13
    I think I see what you mean. I try to explain what I understand by words first.

    In my solution, I set the interval first. But the problem is I did not set a condition for choosing a. So, it is not true for any a but only for "big enough" a which I did not define properly.

    In your solution, you let a number N larger than any value of f(x) first such as f(x0). It doesnt matter whether f(x0) is the minimum o not because N will still be larger than the minimum. Now you already have a bound N for f(x) so I guess the next step you do is to define the corresponding interval a for x by the condition f(x) larger than the bound N(since the limit for f(x) is infinity) for x outside of the interval a.

    Correct?

    http://i359.photobucket.com/albums/oo31/tanzl/ExtremeValueTheorem2.jpg
     
    Last edited: Sep 21, 2008
  15. Sep 22, 2008 #14

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    You now have the idea exactly. But you don't have to 'assume there exists a point x0 such that f(x0)<N'. Just say 'pick a value of N>f(x0) (for any x0)' or you could just say 'pick a value of N>f(0)' (or f(1), f(2) ...). As you said it doesn't matter what x0 is because it doesn't have to be the minimum. Finally, I think you could be a little more explicit in the proof f(x)->infinity. For example, since phi(x)/x^4 -> 0 there is an n such that for |x|>n, |phi(x)/x^4|<1/2. So x^4-phi(x)>x^4-(1/2)*x^4=x^4*(1/2). Now it's clear x^4->infinity. And you probably don't need two separate cases for +/-infinity, right? They are really the same thing.
     
  16. Sep 22, 2008 #15
    Thanks again for your help. One more question. Can N takes any value (1,2,100,1000000)? From my understanding so far the value is not important in this question. I ask this because most of the questions I have done need to limit the bound to (0,1).
     
  17. Sep 22, 2008 #16

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    You can't estimate the bound N without knowing something more about phi(x). If all you know is phi(x)/x^4 -> 0, N (and the minimum) could be anything.
     
  18. Sep 22, 2008 #17
    Let f be any polynomial function. Prove that there is some number y such that |f(y)|<=|f(x)|
    for all x.

    For this question, I can exactly the same thing as previous one.
    But I have problem when I need to assume f(x) > N since I do not know anything about limit of f.

    Is it true for any polynomial function? Lets say -(x2), the maximum is obvious, but can we consider its limit of -[tex]\infty[/tex] as the minimum?
     
  19. Sep 22, 2008 #18

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    You want to think about |f(x)|. f(x) may go to plus or minus infinity as x->+/-infinity but |f(x)| always goes to +infinity, right? Yes, it's an awful lot like the previous problem.
     
  20. Sep 22, 2008 #19
  21. Sep 22, 2008 #20

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    No, now you want to pick a number 0<N<f(x0) for any value of x0. Define the interval [-a,a] such that f(x)<N for |x|>a. That guarantees that the max is on [-a,a], doesn't it?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Intermediate Value Theorem
Loading...