Hello, first time poster here!(adsbygoogle = window.adsbygoogle || []).push({});

I am trying to understand some results I am getting from this "Relativistic Star Ship Calculator". This site sets up the question I'm trying to answer exactly like I imagined it should (thanks to The Forever War). From the description:

The star ship accelerates continuously from the origin to the midpoint of the mission.

At the midpoint, the ship turns its thrusters to face the destination.

The ship decelerates continuously from the midpoint to the destination.

The way I understood it, if you are accelerating at 1G and hope to come arbitrarily close to the speed of light, it should take (3*10^8 m/s)/(9.8 m/s^2)= ~354 days. Similarly, if you hope to decelerate from such a speed, it will require the same amount of time. So say about 2 years of combined acceleration/deceleration.

Further, I thought that at a velocity which is arbitrarily close to c, your Lorentz Factor becomes arbitrarily high, meaning that light years can be traveled in seconds (or less). So the conclusion I reached is that you can travel virtually any distance in ~2 years if you had a ship that accelerates at 1G and can reach a very high fraction of c.

When inputting large distances in the calculator linked above, I get results that don't fit with my rationale. Example:

Input: Distance: 10 LY

Acceleration: 1G

Output: Time: 4.9 Y

Max Speed: 0.987 c

So this calculator assumes your trip takes 4.9 Y (not 2) and you only reach 0.987 c (not .99999....c)

Can someone explain the fault in my reasoning?

Thanks so much!

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Interpreting results from constant-acceleration/distance/subjective-time calculator

Loading...

Similar Threads - Interpreting results constant | Date |
---|---|

I Latest Gamma Ray Burst Experimental results | Mar 6, 2018 |

A Interpretation of covariant derivative of a vector field | Feb 15, 2018 |

A Hawking and Unruh effects -- Differences and interpretation | Aug 1, 2017 |

B An Interpretation of the Geometry of Space-Time Inside a BH | Mar 7, 2017 |

B GR interpretation of a scenario | Jan 31, 2017 |

**Physics Forums - The Fusion of Science and Community**