Hi, All:(adsbygoogle = window.adsbygoogle || []).push({});

The intersection form ( , ): H_n(M,R)xH_n(M,R)-->Z ; Z the integers and R any coefficient ring, in a 2n-manifold is well-defined in homology, i.e.,

if (x,y)= c , and x~x' and y~y' , then (x',y')=c

Still, how is the value of the intersection form affected by changes in the coefficient ring R? Specifically: what if R went from being torsion-free, like, say, the integers, to having torsion. What would be the difference?

What makes me think that there actually is a difference is that the symplectic groups

Sp^2(2g,Z) and Sp(2g,Z) , which are respectively:

i) Sp^2(2g,Z): The automorphisms of H_1(Sg,Z/2) that preserve intersection, and

ii) H_1(Sg,Z) : automorphisms of H_1(Sg,Z) that preserve intersection

are different groups (actually, I think i) is a subgroup of ii )

Any ideas?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Intersection and Coefficients

**Physics Forums | Science Articles, Homework Help, Discussion**