Hello,(adsbygoogle = window.adsbygoogle || []).push({});

I am calculating some integrals in 3 dimensions. However, the difficulties of such integrals lie in the determination of the boundaries of the variables integrated over.

[itex]\int_{C} d^{3}\vec{t}[/itex] e[itex]^{-\vec{s}.\vec{t}}[/itex]

For example, if we consider (C) as the region of the intersection of 2 spheres:

C=|[itex]\vec{s}[/itex]-[itex]\vec{t}[/itex]|<1 and |[itex]\vec{s}[/itex]+[itex]\vec{t}[/itex]|<1

I want to solve these set of inequalities for fixed [itex]\vec{s}[/itex], using spherical coordinates.

i.e. determine the interval over |[itex]\vec{t}[/itex]|, [itex]\phi[/itex] and [itex]\vartheta[/itex]=angle([itex]\vec{s}[/itex],[itex]\vec{t}[/itex])

Does anyone have a strategy to deal with such inequalities?

Thanks in advance.[itex]^{}[/itex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Intersection of 2 spheres

**Physics Forums | Science Articles, Homework Help, Discussion**