I am really having a hard time in this intro to real analysis class. I feel as if I'm the only one in class who isn't getting it. I have an extremely hard time thinking abstractly and constructing my own proofs. I know I need a lot of practice. Here is the problem we have to prove:(adsbygoogle = window.adsbygoogle || []).push({});

Claim: Let A be a nonempty subset of R (all real numbers -- how do I type the symbol for real numbers?). If α = sup A is finite, show that for each ε > 0, there is an a in A such that α – ε < a ≤ α.

My attempt of a proof: Assume α = sup A is finite. Then A is bounded above because it is not empty and its supremum is finite (by the definition that if E is a nonempty subset of R (all reals), we set sup E = ∞ if E is not bounded above). [my question is where does the “ε” come from?] By definition of supremum, there is an element ß in R such that ß < α and ß is not an upper bound. In this case let ε be the ß where ε > 0. Knowing α is the supremum, ε < α, so there is an element a in A such that ε < a ≤ α or α – ε < a ≤ α.

*I also need to prove the converse of this statement which is:

"Let A be a nonempty subset of R (all real numbers) that is bounded above by α. Prove that if for every ε > 0 there is an a in A such that α – ε < a ≤ α, then α = sup A."

When proving the converse, isn't it just basically working backwards?

So I would write: Assume that for every ε > 0 there is an a in A such that α – ε < a ≤ α.

A is nonempty and bounded above by α (given). Then α = sup A is finite by the definition of supremum.

I feel really confused and lost here. I'm really afraid of this class. I need to pass it because it is only offered every 2 years.

Any help, suggestions, and guidance is greatly appreciated.

Thank you.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Intro to Real Analysis Proof

**Physics Forums | Science Articles, Homework Help, Discussion**