HI guys first post(adsbygoogle = window.adsbygoogle || []).push({});

I need to show that

[tex]B^2-E^2/C^2[/tex] is invariant under Lorentz transformation (E and B are electromagnetic fields)

now:

[tex]B^2-E^2/C^2=B^2_x+B^2_y+B^2_z-E^2_x/C^2-E^2_y/C^2-E^2_z/C^2)[/tex]

and

[tex]E'_x=E_x[/tex]

[tex]E'_y=\gamma(E_y-\frac{v}{c}B_z)[/tex]

[tex]E'_z=\gamma(E_z-\frac{v}{c}B_y)[/tex]

[tex]B'_x=B_x[/tex]

[tex]B'_y=\gamma(B_y+\frac{v}{c}E_z)[/tex]

[tex]B'_z=\gamma(B_z+\frac{v}{c}E_y)[/tex]

but i cant manupilate it to give me the correct answer ie

[tex]B'^2-E'^2/C^2=B^2_x+B^2_y+B^2_z-E^2_x/C^2-E^2_y/C^2-E^2_z/C^2[/tex]

Can anyone help me out? Basically because of the [tex]\gamma^2[/tex] term im tring to factorise out a [tex]1-\frac{v^2}{C^2}[/tex] ie [tex](1/\gamma^2)[/tex] but im having no joy.

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Invariant under Lorentz transformation

Loading...

Similar Threads for Invariant under Lorentz | Date |
---|---|

Insights Rindler Motion in Special Relativity: Hyperbolic Trajectories - Comments | Mar 28, 2018 |

I Invariance of force and mass | Feb 6, 2018 |

A Difference Between Covariance and Diffeomorphism Invarience | Jan 14, 2018 |

Proof Minkowski metric is invariant under Lorentz transformation | Aug 1, 2013 |

Maxwell eqs invariant under other transforms | Mar 23, 2010 |

**Physics Forums - The Fusion of Science and Community**