Inverse Laplace Transform of

1,570
1
I'm looking to find the ilt of [tex]\frac{1}{s(e^s-1)}-\frac{1}{s^2(e^s-1)}[/tex].

I realize that I can combine this into a rational function whose ilt is [tex]1-t[/tex] or something like that and so the main part I'm interested in is [tex]\frac{1}{e^s-1}[/tex]. I'm not finding it in any table except when I expand it as a geometric series; then it's a sum of delta functions or something but I was wondering if there was a better closed form. Once I get the ilt of the rational expression and the inverted exponential, I can convulte the two, right?

Any help appreciated.

Oh, btw, what I'm trying to do is find the asymptotic behavior of [tex]\sum_{k=1}^{t-1}(1-t/k)^k[/tex]. I took the lt of this and I *think* the first two terms in its Laurant series expansion are given above, the third term being really small. I'm then hoping that the ilt of the first two terms in the lt will give me the asymptotic behavior of the original.

Thanks.
 

Want to reply to this thread?

"Inverse Laplace Transform of " You must log in or register to reply here.

Related Threads for: Inverse Laplace Transform of

Replies
0
Views
579
  • Posted
Replies
0
Views
2K
Replies
0
Views
857
Replies
0
Views
3K
Replies
0
Views
1K
Replies
1
Views
7K
Replies
0
Views
3K
Replies
0
Views
1K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top