According to the Wikipedia page, the inverse Laplace transform is(adsbygoogle = window.adsbygoogle || []).push({});

[tex]f(x) = \frac{1}{2 \pi i} \lim_{y\rightarrow \infty} \int_{x_0-iy}^{x_0+iy} F(s')e^{s'x}ds'[/tex]

Something seems wrong though. If I were to take the Laplace transform this equation, I should get F(s) coming out of the right hand side. But when I try this, I get a stray factor of i:

[tex]\mathcal{L}(f(x))=\int_{-\infty}^{\infty}f(x)e^{-sx}dx = \frac{1}{2 \pi i} \lim_{y\rightarrow \infty} \int_{x_0-iy}^{x_0+iy} \int_{-\infty}^{\infty} F(s')e^{(s'-s)x}dxds' = \frac{1}{2 \pi i} \lim_{y\rightarrow \infty} \int_{x_0-iy}^{x_0+iy} F(s') [\int_{-\infty}^{\infty}e^{(s'-s)x}dx]ds'

\frac{1}{2 \pi i} \lim_{y\rightarrow \infty} \int_{x_0-iy}^{x_0+iy} F(s') \cdot 2 \pi \delta (s'-s)ds'= -i F(s)[/tex]

I would appreciate it if someone could identify my mistake. Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Inverse Laplace transform

**Physics Forums | Science Articles, Homework Help, Discussion**