- #1
- 9
- 0
- Homework Statement
- I want to prove that ##\left| \frac{\partial(x,y)}{\partial(u,v)} \right|=\frac{1}{\left|\frac{\partial(u,v)}{\partial(x,y)}\right|}## (If this is true)
- Relevant Equations
- ##\frac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix} x_u & x_v\\ y_u&y_v \end {vmatrix}##
##\frac{\partial(u,v)}{\partial(x,y)}=\begin{vmatrix} u_x & u_y\\ v_x&v_y \end {vmatrix}##
I got that ##{x_u}{y_v}-{x_y}{y_u}=####\frac{1}{\frac{1}{{x_u}{y_v}}-\frac{1}{{y_u}{x_v}}}##. But this implies that ##{x_u}{x_v}{y_u}{y_v}=-1## and I don't see how that is true?