Is there a systematic way of counting the number of invertible matrices in a general linear group with entries in a finite ring? For example, GL(3, Z_2). The determinant has to be zero, but other than that, I don't know any systematic way of counting them. I usually start by saying that there are at least 13 non-invertible ones (if at least one row or column are zeros) then I look at the equation of the determinant and try to go from there.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Invertible Matrix

**Physics Forums | Science Articles, Homework Help, Discussion**