Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Iron Fusion Reactors

  1. Jul 7, 2010 #1
    If iron is the last element to undergo fusion wouldn't it be expected to be at a controlled state. Ie: if the pile wants to go toward Hydrogen, bump up the fusing protons. If it to go beyond the Iron tipping point toward Uranium, adsorb protons. From the Binding Energy Curve, the reactor may be less than 5,000K to 10,000K and be containable. What do you think?? :uhh:
     
  2. jcsd
  3. Jul 7, 2010 #2

    ZapperZ

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor

    I think that you need to reconsider.

    If it takes all these troubles of trying to strip away one electron from H or D, just to get bare nucleus to initiate fusion, imagine trying to strip away twenty six (!) electrons just to get bare iron nucleus! Not only that, you have to over come not just the repulsive force of one proton against another proton (as in the H/D fusion), but instead the repulsive force equivalent to 26 protons against another 26 protons!

    Zz.
     
  4. Jul 7, 2010 #3

    Janus

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Another point is that Iron does not undergo fusion or fission without a net input of energy. It will not "want" to go towards towards either Hydrogen or Uranium. Fusing Iron will consume energy, not produce it.
     
  5. Jul 7, 2010 #4
    This conjecture does not start at H and move up the elements to Fe. The slope of the Energy Binding Chart is flat there and Iron and Isotopes and protons take less energy or more fission depending on the reactor control strategy. One could contemplate down to fuseing Al. or fissing out to Uu to reycle Uranium rods to cool the reactor. ... L
     
  6. Jul 7, 2010 #5

    ZapperZ

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor

    I have no idea what you just said here.

    Do you know how to calculate simple repulsive forces between, say two charges at +Q, versus two charge, same distance, with each at +26Q?

    Do you also know that to fuse, you need BARE nuclei? How much energy do you think you need to strip away all of the electrons in an Fe atom, versus a hydrogen atom?

    Zz.
     
  7. Jul 16, 2010 #6
    Why are you even asking about Iron when physics shows that fusing 2 Iron atoms USES energy. The only reason you get energy from fusion of lighter particles is because their resulting mass after fusing is less than the original masses added together. Fusing 2 iron atoms together results in a higher mass atom than the 2 added together so you have to add energy. There is a reason stars blow the F up when they reach Iron and have nothing lighter left.
     
  8. Jul 17, 2010 #7
    This doesn't intend to strip electrons to bare Hydrogen then rebuild it. We start from Al to Fe then Fe to U depending how much is needed to de-energize the Pile. (Sorry that I was away for so long' couldn't help it)
     
  9. Jul 17, 2010 #8
    This scheme fuses up to Iron and releases energy. We are fusing two Al up to an Ni and Hydrogen. If the pile wants to go unstable add protons, fuse higher than Iron and de-energise the pile.
     
  10. Jul 18, 2010 #9

    ZapperZ

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor

    1. You still haven't answered my question on the coulomb repulsion force.

    2. Who said anything about stripping hydrogen atom? I'm asking about the energy in striping Fe atom to its bare nucleus.

    3. I don't think you have neither a clue on what you are doing, nor are you understanding the responses that you've been given.

    One of the things we try to do in this forum is not only to provide responses, but also to try and give you some skills, hints, or ideas so that you yourself can come up with the necessary answers. It is the most effective means of learning that I know of. It is why, for example, I asked you if you know how to calculate the coulomb force between two like charged particles, and even tried to guide you into considering the difference in the magnitude of such a force when one goes from a bare H nucleus to a bare Fe nucleus.

    If you don't understand what you were told, ask. Don't continue to try and perpetuate your misunderstanding by ignoring something that is crucial in what you're trying to do.

    Zz.
     
    Last edited: Jul 18, 2010
  11. Jul 18, 2010 #10

    Astronuc

    User Avatar
    Staff Emeritus
    Science Advisor

    Um - no.
     
  12. Jul 18, 2010 #11
    I'm just amazed that someone would believe that what stellar "engines" of fusion don't accomplish, would be some simple solution here on earth. :rolleyes:
     
  13. Jul 18, 2010 #12
    [PLAIN]http://www.alaskajohn.com/physics/charts/binding_energy.jpg [Broken]

    All the elements that makeup the earth are from the fusions pile of the stars and seem to be stable at a containable. Iron Fe 56 is around the highest made in a normal star and has the largest MeV. The trick is to use the properties of Fe at the peak thus flattest section of the curve. To go say from H to He, as we do in a Hydrogen explosion, yields 7.0 Mev. However to go from Al to Fe we only get a yeild of 0.3 MeV. On the fission side from say Fe to Xe (Zenon) we get an absorption of energy of -0.3 Mev. The Hydrogen process with its 7.0 MeV is unsustainable, stellar hot, uncontainable and thus unusable as a energy source on Earth. In contrast the Iron range pile is none of the above as exhibited by the temperatures gradients of the Sun from outer part of its corona reaching 15 million K and yet its temperature at the Suns surface to be 5,000 K http://imagine.gsfc.nasa.gov/docs/science/mysteries_l1/corona.html . It is still a debate that the Sun has a shell of iron and at the surface temperature of 5,000 K. Thes argues that the Iron pile is possibly useable by humans. sustainable, and containable.
     
    Last edited by a moderator: May 4, 2017
  14. Jul 18, 2010 #13

    Astronuc

    User Avatar
    Staff Emeritus
    Science Advisor

    No - it's not debatable that the sun's surface is Fe. The thunderbolts site is a crackpot site.

    It is clear from this post that one doesn't clearly understand nuclear processes such as fusion or fission.
     
    Last edited by a moderator: Jul 18, 2010
  15. Jul 18, 2010 #14
    I'm just baffled by this; how can anyone think something so patently wrong? An amateur with a telescope can refute these claims. For god's sake, you're talking about using the death-knell of a star for the purposes of earthbound fusion with an energy PAYOUT?! This is insane.
     
  16. Jul 18, 2010 #15

    ZapperZ

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor

    This thread is done.


    Zz.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook