Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I'm reading: "Let [itex]v_{a}[/itex] represent a generic element of [itex]R^{D}[/itex]. The action of a non-singular linear operator on this space gives a D-dimensional irreducible representation V of GL(D); indeed, this representation defines the group itself".

I have a couple of questions:

1. How do I know that the rep will be IRREDUCIBLE? Is it a straightforward consequence of the linearity of the operators, or otherwise?

2. What does the last bit mean? Is it that the representation furnished by the action of linear ops on R is the "fundamental" of GL(D)?

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Irreducible representation of GL(D)

**Physics Forums | Science Articles, Homework Help, Discussion**