I just beginning to study measure theory. so far from what i understand so far , can we say in general, an integral is a measure, (ie it is nothing but a set function. a mapping [tex] F : \mathcal{F} \rightarrow \mathbb{R} [/tex] where [tex] \mathcal{F} [/tex] is a family of sets.(adsbygoogle = window.adsbygoogle || []).push({});

does it make sense to say in general an integral of a function F, is [tex] \int_{A} F d\mu [/tex] is the measure of the image of the [tex] F [/tex] over some set [tex] A [/tex] using the measure [tex] \mu [/tex]. with the condition the image of [tex] F [/tex] over [tex] A [/tex] must be measurable using the measure [tex] \mu [/tex]

so for example the two that i know are lebesgue-integral, lebesgue-stieltjes integral, are basically are general integrals using different measures.

if we could say the above then where would the riemann integral fit in to this.

sorry if this is a bit vague, i'm trying to get my head around this stuff

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Is an Integral a measure

**Physics Forums | Science Articles, Homework Help, Discussion**