Is Lorentz group correct?, my question is let's be a group A so the Lorentz Groups is a subgroups of it so [tex] A>L [/tex] (L=Lorentz group , G= Galilean group) of course if we had an element tending to 0 so:(adsbygoogle = window.adsbygoogle || []).push({});

[tex] A(\hbar)\rightarrow L [/tex] (Group contraction)

so for small h the groups A and L are the same and the laws of physics are invariant under L or A transform, but a pure quantum level when Planck's h is different from 0 the A and L group would be completely different.

this 'Group contraction' would be an analogue of:

[tex] L(\beta)\rightarrow G [/tex] where 'beta' is v/c for small velocities we find that law of physics are invariant under Galilean or Lorentz transform.

the question is what would be the 'A' group?, could we find a group A so contracted in elements b=v/c or e=h gives us the Lorentz or Galiean groups and that the transformations (Lorentz, galilean,..) are linear?.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Is Lorentz group correct?

**Physics Forums | Science Articles, Homework Help, Discussion**