(adsbygoogle = window.adsbygoogle || []).push({}); Is my proof correct? (abstract algebra - groups)

1. The problem statement, all variables and given/known data

If G is a finite group of even order, show that there must be an element a≠e such that a=a^{-1}

I believe my proof is a bit odd and unusual, I'd appreciate it if someone else checks it and suggests a more convenient argument for this problem.

3. The attempt at a solution

well, since G is a finite group of even order, let's assume |G|=2k. since G is finite, we can assume G looks like this: [itex]G=\{e,a,a^{-1},b,b^{-1},ab,(ab)^{-1},...\}[/itex]

But if we relabel all elements, we can show G in the form: [itex]G=\{e,g_1,g_1^{-1},...,g_k,g_k^{-1}\}[/itex], let's call this new representation of G as G' and notice that G=G'. if we exclude e, we have |G-{e}|=2k-1. the number of [itex]g_i[/itex]'s in G' is k, so if all their respective [itex]g_i^{-1}[/itex]'s were distinct, G'-{e} would have 2k elements, but that would be impossible because G and G' were the same set! so that would mean that not all [itex]g_i[/itex]'s and [itex]g_i^{-1}[/itex] are distinct, so there exists a [itex]g_i[/itex] for which we have: [itex]g_i[/itex]=[itex]g_i^{-1}[/itex] Q.E.D

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Is my proof correct?

**Physics Forums | Science Articles, Homework Help, Discussion**