I calculated the expectation value of the momentum of the charge-conjugated Dirac spinor and found that it was the negative of that of the Dirac spinor. Here is the calculation.(adsbygoogle = window.adsbygoogle || []).push({});

Charge conjugation operator is chosen to be [itex]C=i\gamma^0\gamma^2[/itex]. The spinor is [itex]\Psi[/itex] and its charge-conjugated spinor [itex]\Psi_C=-i\gamma^2\Psi^*[/itex].

The expectation value of the momentum of [itex]\Psi_C=-i\gamma^2\Psi^*[/itex] is given by

[itex]<\vec p>_C=\int d^3x\bar\Psi_C\vec p\Psi_C=\int d^3x\Psi^T\gamma^0\gamma^2\vec p\gamma^2\Psi^*=-[\int d^3x\bar\Psi\vec p^*\Psi]^*[/itex]

[itex]=[\int d^3x\bar\Psi\vec p\Psi]^*=<\vec p>^*=<\vec p>[/itex]

where [itex]<\vec p>[/itex] is real.

Is there anything wrong with my calculation, because my teacher didn't give me the grade for this?

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Is <p>_c = -<p>?

**Physics Forums - The Fusion of Science and Community**