- #1

- 19

- 0

## Main Question or Discussion Point

Something that I have always wondered: say you know that a robot will push a button during a 2 minute period after a timer has been started, and you know that the robot picks a time to press it at complete random.

Is the probability that the button will be pressed exactly 1 minute after the timer is started zero? I would say this because probability is defined as (# of specified events/# of possible events). Assuming time and movement are continuous, you would have infinite possible events, and 1 specified event (the timer is exactly 1.000...), and 1/infinity=0. But the robot has to press it at some time so say it presses it at exactly the sqrt2 minutes. Before it happened, the probability that the robot would press the button at sqrt2 minutes was 0 but then the event happened. How is that possible?

Is the probability that the button will be pressed exactly 1 minute after the timer is started zero? I would say this because probability is defined as (# of specified events/# of possible events). Assuming time and movement are continuous, you would have infinite possible events, and 1 specified event (the timer is exactly 1.000...), and 1/infinity=0. But the robot has to press it at some time so say it presses it at exactly the sqrt2 minutes. Before it happened, the probability that the robot would press the button at sqrt2 minutes was 0 but then the event happened. How is that possible?