(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

The ground state wave function for the electron in a hydrogen atom is:

[tex]\psi(r) = \frac{1}{\sqrt (\pi a_o^3)} e^\frac{-r}{a_o}[/tex]

where r is the radial coordinate of the electron and a_o is the Bohr radius.

Show that the wave function as given is normalized.

2. Relevant equations

Any wave function satisfying the following equation is said to be normalized:

[tex]\int_{-\infty}^{+\infty} |\psi|^2\dx = 1[/tex]

3. The attempt at a solution

Because the sum of all probabilities over all values of r must be 1,

[tex]\int_{-\infty}^{+\infty} (\frac{1}{\sqrt (\pi a_o^3)} e^\frac{-r}{a_o})^2 dr = \frac{1}{\pi a_o^3} \int_{-\infty}^{+\infty} e^\frac{-2r}{a_o^2} dr = 1[/tex]

Since the integral can be expressed as the sum of two integrals, we have,

[tex]\frac{1}{\pi a_o^3} \int_{-\infty}^{+\infty} e^\frac{-2r}{a_o^2} dr = \frac{2}{\pi a_o^3} \int_0^{+\infty} e^\frac{-2r}{a_o^2} dr = 1 [/tex]

After integrating, I obtain,

[tex]\frac{1}{\pi a_o^3} = 1[/tex]

which is definitely incorrect. However, I do not see any other way to proceed. could someone give some assitance.

Thanks for your kind assistance

jg370

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Is the wave function normalized?

**Physics Forums | Science Articles, Homework Help, Discussion**