Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Is this a subspace?

  1. Oct 27, 2012 #1
    The problem is attached. I need to determine if it's a subspace.
    So it must satisfy 3 conditions:
    1) 0 vector is in S
    2) if U and V are in S then U+V is in S
    3) if V is in S, then cV where c is a scalar is in S


    For the 1st condition:
    I said the 0 vector is not in S, but I'm not sure if I'm understanding it correctly. For this problem when we say the 0 vector is in S are we asking if we have x=0 does that give us the 0 vector?


    Let's say we changed the bottom element to 2y-1 instead of 2x-1. And if x and y are in R.
    For this case, the 0 vector would be in S right? We can have x=0 and y=1/2 which gives the 0 vector?
     

    Attached Files:

  2. jcsd
  3. Oct 27, 2012 #2
    Another question I have is for another problem (I attached this in this post). My book is trying to prove that S is not closed under addition and scalar multiplication. I don't understand why it's necesasry to do that.
    Can't you just look at it and see that if the 0 vector is in S, then that means x1=0 and x3=0, but x1+x3=0+0≠-2, which means the 0 vector isn't in S. What is the point of proving the more complicated steps?
     

    Attached Files:

  4. Oct 29, 2012 #3
    Bump, anyone?
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook