1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Is this Differential right?

  1. Aug 15, 2011 #1
    Hi there, I have this exercise, I'd like to know what you think, if I did this right:

    If [tex]z=F(u,v)=5u^2+4v-7[/tex], with [tex]\begin{Bmatrix} x+y^3+u^3+v=0\\x^3+y-4u+v^4=0\end{matrix}[/tex]. Determine if its possible the dF over a point adequately chosen.

    So I choose [tex]P_0(0,-1,0,1)[/tex] which satisfies the system

    Then I've verified that [tex]F_1,F_2[/tex] satisfies the implicit function theorem, both functions are polynomials of class [tex]C^k[/tex] y

    [tex]\frac{{\partial (F_1,F_2)}}{{\partial (u,v)}}=4\neq{0}[/tex] then [tex]\exists{ E_r(P_0)}:\begin{Bmatrix} u=u(x,y)\\v=v(x,y)\end{matrix}[/tex]

    Then I consider:

    [tex]dF=\frac{{\partial F}}{{\partial x}}dx+\frac{{\partial F}}{{\partial y}}dy[/tex]

    [tex]\frac{{\partial F}}{{\partial x}}=\frac{{\partial F}}{{\partial u}}\frac{{\partial u}}{{\partial x}}+\frac{{\partial F}}{{\partial v}}\frac{{\partial v}}{{\partial x}}[/tex]

    [tex]\frac{{\partial F}}{{\partial y}}=\frac{{\partial F}}{{\partial u}}\frac{{\partial u}}{{\partial y}}+\frac{{\partial F}}{{\partial v}}\frac{{\partial v}}{{\partial y}}[/tex]

    And I set:

    [tex]\frac{{\partial F_i}}{{\partial x}}= 1+3u^2\frac{{\partial u}}{{\partial x}}+\frac{{\partial v}}{{\partial x}}=0\\3x^2-4\frac{{\partial u}}{{\partial x}}+4v^3\frac{{\partial v}}{{\partial x}}=0\end{matrix}[/tex]

    From where I get:
    [tex]\frac{{\partial u}}{{\partial x}}=0[/tex]
    [tex]\frac{{\partial v}}{{\partial x}}_{P_0}=-1[/tex]

    Analogous procedure for the derivatives with respect to y, and:

    [tex]dF=\frac{{\partial F}}{{\partial u}}\frac{{\partial u}}{{\partial x}}dx+\frac{{\partial F}}{{\partial v}}\frac{{\partial v}}{{\partial y}}dy[/tex]

    Is this right?
  2. jcsd
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted