I'm taking a course in rigorous calculus, using the famous calculus textbook by Tom Apostol. I'm required to prove that if x is real and satisfies 0 <= x < h, for all positive real h, then x = 0. Here is my 'proof':(adsbygoogle = window.adsbygoogle || []).push({});

if x >= 0, then either x > 0 or x= 0. i'm going to prove that x > 0 leads to contradiction. if x>0, then let h = x/2 > 0. then x-h = x-x/2 = x/2 > 0, and therefore, h < x...which contradicts the h > x for all h. So x=0.

Is this proof all right and sufficiently rigorous?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Is this proof okay?

**Physics Forums | Science Articles, Homework Help, Discussion**