- #1
- 794
- 1
Is the subset A a subspace of W
[tex]W=\left \{ \begin{bmatrix}
1 &1 \\
a_{21}& a_{22} \\
a_{31}& a_{32}
\end{bmatrix} :a_{ij} \in \mathbb{C}\right \}[/tex]
Let [tex]A=\begin{bmatrix}
1 &1 \\
a_{21}& a_{22}\\
a_{31}& a_{32}
\end{bmatrix}[/tex]
[tex]A \in W[/tex]
Then [tex]2A \in W[/tex] since
[tex]2A=2\begin{bmatrix}
1 &1 \\
a_{21}& a_{22}\\
a_{31}& a_{32}
\end{bmatrix}[/tex]
Is this correct? My notes is telling its NOT closed under scalar multiplication which I don't think is correct.
[tex]W=\left \{ \begin{bmatrix}
1 &1 \\
a_{21}& a_{22} \\
a_{31}& a_{32}
\end{bmatrix} :a_{ij} \in \mathbb{C}\right \}[/tex]
Let [tex]A=\begin{bmatrix}
1 &1 \\
a_{21}& a_{22}\\
a_{31}& a_{32}
\end{bmatrix}[/tex]
[tex]A \in W[/tex]
Then [tex]2A \in W[/tex] since
[tex]2A=2\begin{bmatrix}
1 &1 \\
a_{21}& a_{22}\\
a_{31}& a_{32}
\end{bmatrix}[/tex]
Is this correct? My notes is telling its NOT closed under scalar multiplication which I don't think is correct.
Last edited by a moderator: