Hi,(adsbygoogle = window.adsbygoogle || []).push({});

Consider P the space of n by n positive definite matrices.

Let <X,Y>_p = trace(p^-1 X p^-1 Y) where p in P be the metric tensor on P so that it is a Riemannian manifold.

The general linear group G acts on P by phi: G X P -> P, phi(g,p) = phi_g(p)=gpg' (g' means g transpose).

This a transitive action by isometries. Does this constitute the isometry group on P however, that is, can every isometry on P be written in this fashion?

Thanks!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Isometry group of positive definite matrices

Tags:

**Physics Forums | Science Articles, Homework Help, Discussion**